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A Residual Replacement Strategy for Improving the Maximum

Attainable Accuracy of Communication-Avoiding Krylov Subspace

Methods

Erin Carson and James Demmel

Abstract

The behavior of conventional Krylov Subspace Methods (KSMs) in �nite precision arithmetic is a well-studied
problem. The �nite precision Lanczos process, which drives convergence of these methods, can lead to a signi�cant
deviation between the recursively computed residual and the true residual, b − Axk, decreasing the maximum
attainable accuracy of the solution. Van der Vorst and Ye [24] have advocated the use of a residual replacement
strategy for KSMs to prevent the accumulation of this error, in which the computed residual is replaced by the
true residual at speci�c iterations chosen such that the Lanczos process is undisturbed.

Recent results have demonstrated the performance bene�ts of Communication-Avoiding Krylov Subspace
Methods (CA-KSMs), variants of KSMs which use blocking strategies to perform s computation steps of the
algorithm for each communication step. This allows an O(s) reduction in total communication cost, which can
lead to signi�cant speedups on modern computer architectures. Despite the potential performance bene�ts of
CA-KSMs, the �nite precision error in these variants grows with s, an obstacle for their use in practice.

Following the work of Van der Vorst and Ye , we bound the deviation of the true and computed residual in �nite
precision CA-KSMs, which leads to an implicit residual replacement strategy. We are the �rst, to our knowledge,
to perform this analysis for CA-KSMs. We show how to implement our strategy without a�ecting the asymptotic
communication or computation cost of the algorithm. Numerical experiments demonstrate the e�ectiveness of
our residual replacement strategy for both CA-CG and CA-BICG. Speci�cally, it is shown that accuracy of order
O(ε)||A|| · ||x|| can be achieved with a small number of residual replacement steps for an appropriately chosen
polynomial basis, which demonstrates the potential for practical use of CA-KSMs.

1 Introduction

Krylov subspace methods (KSMs) are a class of iterative algorithms commonly used to solve linear systems. These
methods work by iteratively adding a dimension to a Krylov subspace and then choosing the �best� solution from
the resulting subspace. In terms of linear algebra, these operations consist of one or more sparse matrix-vector
multiplications (SpMVs) and vector operations in each iteration, where the solution xk and residual rk are updated
as

xk = xk−1 + αk−1p
k−1 rk = rk−1 − αk−1Apk−1 (1)

or something similar. This encompasses algorithms such as Conjugate Gradient (CG), steepest descent, Biconjugate
Gradient (BICG), Conjugate Gradient Squared (CGS), and Stabilized Biconjugate Gradient (BICGSTAB).

It is important to notice that xk and rk have di�erent round-o� patterns. That is, the expression for xk does
not depend on rk, nor does the expression for rk depend on xk. Therefore, computational errors made in xk are not
self-correcting. Throughout the iteration, these errors accumulate, and cause deviation of the true residual, b−Axk,
and computed residual, rk. This limits the maximum attainable accuracy, which indicates how accurately we can
solve the system on a computer with machine precision ε. When the algorithm reaches this maximum attainable
accuracy, the computed residual will appear to continue decreasing in norm, whereas the norm of the true residual
stagnates. This can lead to a very large error in the solution despite the algorithm reporting a very small residual
norm.

This has motivated the use of strategies such as restarting and residual replacement to limit the error that
accumulates throughout the computation (see, e.g., [20, 24]). The solution is not as simple as using the true residual
in every iteration (or even every s iterations). In addition to increasing both the communication and computation
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in the method, replacing the recursively computed residual with the true residual can destroy the super-linear
convergence properties exhibited by KSMs, as it is these recurrences which drive the Lanczos process [20, 24].
Residual replacement strategies must then carefully select iterations where residual replacement takes place, which
requires estimating the accrued rounding error. Van der Vorst and Ye have successfully implemented such a strategy
for standard Krylov methods [24].

The computation that occurs in each iteration in standard Krylov methods, namely, the updates of xk and rk,
consist of one or more SpMV and vector operations. Because there are dependencies between iterations in standard
Krylov methods and the main kernels in each iteration have low computation to communication ratios, standard
Krylov method implementations are communication-bound on modern computer architectures.

This motivated s−step, or, Communication-Avoiding KSMs (CA-KSMs), which are equivalent to the standard
KSM implementations in exact arithmetic. These variants use blocking strategies to perform s computation steps
of the algorithm for each communication step, allowing an O(s) reduction in total communication cost (see, e.g.,
[2, 3, 4, 6, 7, 10, 11, 16, 19, 21, 22]). Despite attractive performance bene�ts, these variants are often considered
impractical, as increased error in �nite precision can negatively a�ect stability. The deviation of the true and
computed residual observed in standard KSMs is worse for CA-KSMs, with the upper bound depending on s.
Although many previous authors have observed this behavior in CA-KSMs (see, e.g. [3, 5, 4, 11, 19, 25]), we are
the �rst, to our knowledge, to provide a quantitative analysis of round-o� error in these algorithms which limits the
maximum attainable accuracy. Our analysis, which follows the analysis for standard KSMs in [24], leads directly to
an implicit residual replacement strategy to reduce such error.

Our numerical experiments suggest that, for solving Ax = b, if the corresponding standard method with residual
replacement converges such that the norm of the true residual is O(ε||A|| · ||x||), and all (s+ 1)-dimensional Krylov
bases generated in our CA-KSM are numerically full rank, our methods will also converge with norm of the true
residual equal to O(ε||A|| · ||x||) when our residual replacement strategy is employed. Furthermore, we note that if
we generate the Krylov basis using properly chosen Newton or Chebyshev polynomials, the norm of the basis grows
slowly with s. Therefore, the number of residual replacement steps for these bases will generally grow slowly with
respect to the total number of iterations, and we claim that stability in CA-KSMs can be achieved with no asymptotic
increase in the communication cost of s steps.

1.1 Related Work

We brie�y discuss related work in the areas of s-step and CA-KSMs, as well as work related to the numerical analysis
of standard KSMs.

1.1.1 s-step Krylov Subspace Methods

The �rst instance of an s−step method in the literature is Van Rosendale's conjugate gradient method [19]. Van
Rosendale's implementation was motivated by exposing more parallelism using the PRAM model. Chronopoulous
and Gear later created an s−step GMRES method with the goal of exposing more parallel optimizations [5]. Walker
looked into s-step bases as a method for improving stability in GMRES by replacing the modi�ed Gram-Schmidt
orthogonalization process with Householder QR [25]. All these authors used the monomial basis, and found that
convergence often could not be guaranteed for s > 5. It was later discovered that this behavior was due to the inherent
instability of the monomial basis, which motivated research into the use of other bases for the Krylov Subspace.

Hindmarsh and Walker used a scaled (normalized) monomial basis to improve convergence [10], but only saw
minimal improvement. Joubert and Carey implemented a scaled and shifted Chebyshev basis which provided more
accurate results [12]. Bai et al. also saw improved convergence using a Newton basis [1]. Although successively
scaling the basis vectors serves to lower the condition number of the basis matrix, hopefully yielding convergence
closer to that of the standard method, this computation reintroduces the dependency we sought to remove, hindering
communication-avoidance. Hoemmen resolves this problem using a novel matrix equilibration and balancing approach
as a preprocessing step, which eliminates the need for scaled basis vectors [11].

Hoemmen et. al [6, 11, 16] have derived Communication-Avoiding variants of Lanczos, Arnoldi, CG and GMRES.
The derivation of Communication-Avoiding variants of two-sided Krylov subspace methods, such as BICG, CGS,
and BICGSTAB can be found in [2].
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1.1.2 Error Analysis of Krylov Subspace Methods

An upper bound on the maximum attainable accuracy for KSMs was provided by Greenbaum [9]. Greenbaum proved
that this bound can be given a priori for methods like CG, but can not be predetermined for methods like BICG,
which can have large intermediate iterates. Additionally, Greenbaum has shown the backward stability of the CG
algorithm, by showing that the Ritz values found lie in small intervals around the eigenvalues of A. There are many
other analyses of the behavior of various KSMs in �nite precision arithmetic (see, e.g. [14, 15, 23]). The reader is
also directed to the bibliography in [17].

Sleijpen and Van der Vorst implemented a technique called ��ying restarts� to decrease the amount of round-o�
error that occurs in KSMs [20]. Their method, which is applicable to many KSMs, iteratively tracks an upper
bound for the amount of round-o� that has occurred in the iteration so far. Using this upper bound, the algorithm
may decide, at each iteration, to perform a �group update�, to restart the algorithm (setting the right hand side
appropriately), or both. The bene�t from using a group update strategy is analogous to grouping to reduce round-
o� error in �nite precision summation. Following this work, Van der Vorst and Ye devised a residual replacement
strategy, which, rather than restarting, replaces the residual with the computed value of the true residual, combined
with group updates [24]. This residual replacement occurs at iterations chosen such that two objectives are met: 1)
the accumulated round-o� does not grow so large as to limit the attainable accuracy, and 2) the Lanczos process is
not perturbed so much as to slow the rate of convergence. To determine when these conditions are met, the algorithm
iteratively updates a bound on the error accrued thus far. Our analysis closely parallels that of Van der Vorst and
Ye.

1.2 Communication-Avoiding Conjugate Gradient

We brie�y review the Communication-Avoiding Conjugate Gradient algorithm (CA-CG), given in Algorithm 1. We
chose CG for simplicity, although the same general technique can be applied to other KSMs as well. In the interest of
space, we will not derive the algorithm here, but instead refer the reader to numerous other works on the topic, such
as [3, 5, 6, 11, 13, 19, 22]. The CA-CG method has both an inner loop, which iterates from j = 1 : s, and k outer
loop iterations, where k depends on the number of steps until convergence (or some other termination condition).
Therefore, we will index quantities as sk + j for clarity.

In CA-CG, we do not update xsk+j , rsk+j , and psk+j directly within the inner loop, but instead update their
coe�cients in the Krylov basis

V k = [P k, Rk] = [ρ0(A)psk, ρ1(A)psk, ..., ρs(A)psk, ρ0(A)rsk, ρ1(A)rsk, ..., ρs−1(A)rsk]

where ρi is a polynomial of degree i. We assume a three-term recurrence for generating these polynomials, de�ned
by parameters parameters γi, θi, and σi:

ρi(z) = γi(A− θiI)ρi−1(z) + σiρi−2(z)

This Krylov basis is generated at the beginning of each outer loop, using the current r and p vectors, by the
communication-avoiding matrix powers kernel, denoted Akx() below. We then represent xsk+j , rsk+j , and psk+j by
coe�cients esk+j , csk+j , and ask+j , which are vectors of length O(2s+ 1), such that

xsk+j = V kesk+j + xsk

rsk+j = V kcsk+j

psk+j = V kask+j

The matrix powers kernel also returns the tridiagonal matrix T , of dimension (s+ 1)× s, constructed such that

AP ki = P ki+1Ti+1

ARki = Rki+1Ti+1

where P ki , R
k
i are n × i matrices containing the �rst i columns of P k or Rk, respectively, and Ti+1 is the matrix

containing the �rst i+ 1 rows and �rst i columns of T . Let V kj = [P kj , R
k
j−1]. This allows us to write
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AV kj = A[P kj , R
k
j−1] = [P kj+1Tj+1, R

k
jTj ] = V kj+1

[
Tj+1

Tj

]
Let T ′j+1 =

[
Tj+1

Tj

]
. We can now write an expression for Apsk+j as follows,

Apsk+j = AV kask+j

= (AV kj )āsk+j

= V kj+1T
′
j+1ā

sk+j

= V kT ′ask+j

where āsk+j denotes the nonzero entries of ask+j , in order to match dimensions with V kj . Therefore, T
′ask+j are the

Krylov basis coe�cients for Apsk+j . This expression allows us to avoid explicit multiplication by A within the inner
loop, and thus allows us to avoid communication.

Algorithm 1 CA-CG Method

x0, r0 = b−Ax0, p0 = r0

k = 0
while (not converged)

[P k, Rk, T ] = Akx(A, [psk, rsk], [s+ 1, s], [[ρ0, ..., ρs]])
//where ρi is a polynomial of degree i

Let V k = [P k, Rk],Gk = (V k)TV k

//Initialize coefficient vectors, which

//will be maintained such that xsk+j = V kesk+j + xsk, rsk+j = V kcsk+j , psk+j = V kask+j

ask = [1, 02s]
T
,csk = [0s+1, 1, 0s]

T
, esk = [02s+1]

for j = 1 : s
αsk+j−1 = ((csk+j−1)TGk(csk+j−1))/((ask+j−1)TGk(T ′ask+j−1))
esk+j = esk+j−1 + αsk+j−1a

sk+j−1

csk+j = csk+j−1 − T ′
(
αsk+j−1a

sk+j−1)
βsk+j−1 = ((csk+j)TGk(csk+j))/((csk+j−1)TGk(csk+j−1))
ask+j = csk+j + βsk+j−1a

sk+j−1

end for

xsk+s = [P k, Rk]esk+s + xsk

rsk+s = [P k, Rk]csk+s

psk+s = [P k, Rk]ask+s

k = k + 1
end while

return xsk

2 Error in Finite Precision CA-KSMs

We assume A is a �oating point matrix. Throughout this analysis, we use a standard model of �oating point
arithmetic:

fl(x+ y) = x+ y + δ with |δ| ≤ ε(|x+ y|)
fl(Ax) = Ax+ δ with |δ| ≤ εmA|A| · |x|+O(ε2)

where ε is the unit round-o� of the machine, x, y ∈ RN , and mA is a constant associated with the matrix-vector mul-
tiplication (for example, the maximal number of nonzero entries in a row of A). All inequalities are componentwise.
Using this model, we can also write
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fl(y +Ax) = y +Ax+ δ with |δ| ≤ ε(|y +Ax|+mA|A| · |x|) +O(ε2)

We can now perform an analysis of round-o� error in computing the updates in s-step methods.

2.1 Error in Iterate Updates

In the communication-avoiding variant of CG, we represent and symbolically update vectors xsk+j = V kesk+j + xsk

and rsk+j = V kcsk+j by their coe�cients in the basis V k = [P k, Rk], where P k and Rk are the O(s) dimensional
Krylov basis vectors with starting vectors psk and rsk, respectively. These vectors are initialized as

esk = [02s+1]T , csk = [0s+1, 1, 0s]
T

In the inner loop, we update these coe�cients as

esk+j = esk+j−1 + αsk+j−1a
sk+j−1 (2)

csk+j = csk+j−1 − T ′
(
αsk+j−1a

sk+j−1) (3)

When Equations (2) and (3) are implemented in �nite precision, they become

êsk+j = fl(êsk+j−1 + αsk+j−1a
sk+j−1) = êsk+j−1 + αsk+j−1a

sk+j−1 + ξsk+j (4)

|ξsk+j | ≤ ε|êsk+j |+O(ε2) (5)

ĉsk+j = fl(ĉsk+j−1 − T ′
(
αsk+j−1a

sk+j−1)) = ĉsk+j−1 − T ′
(
αsk+j−1a

sk+j−1)+ ηsk+j (6)

|ηsk+j | ≤ ε(|ĉsk+j |+mT |T ′| · |αsk+j−1ask+j−1|) +O(ε2) (7)

Note that the rounding errors in computing αsk+j−1a
sk+j−1 do not a�ect the numerical deviation of the true and

computed residuals [24]. Rather, the deviation of the two residuals is due to the di�erent round-o� patterns that
come from di�erent treatment of αsk+j−1a

sk+j−1 in the recurrences for esk+j and csk+j . Therefore, we let the term
αsk+j−1a

sk+j−1 denote the computed quantity.

To avoid confusion, we let x̂sk+j = V̂ kêsk+j + ˆ̂xsk and r̂sk+j = V̂ k ĉsk+j denote the exact values of expressions
whose constituents (ˆ̂xsk,V̂ k,êsk+j and ĉsk+j) are computed in �nite precision. We use ˆ̂xsk+j , ˆ̂rsk+j to denote the
�oating point evaluations of the same expressions. Assuming x0 = 0,

ˆ̂xsk+j = fl(x̂sk+j) = fl(fl(V̂ k · êsk+j) + ˆ̂xsk) = V̂ kêsk+j + ψsk+j +

k−1∑
i=0

(V̂ iêsi+s + ψsi+s) (8)

=

(
V̂ kêsk+j +

k−1∑
i=0

V̂ iêsi+s

)
+

(
ψsk+j +

k−1∑
i=0

ψsi+s

)
|ψsk+j | ≤ ε(|ˆ̂xsk+j |+mV |V̂ k| · |êsk+j |) +O(ε2) (9)

and

ˆ̂rsk+j = fl(r̂sk+j) = fl(V̂ k ĉsk+j) = V̂ k ĉsk+j + φsk+j (10)

|φsk+j | ≤ ε(|ˆ̂rsk+j |+mV |V̂ k| · |ĉsk+j |) (11)

We can then write an expression for ˆ̂xsk+j in terms of x̂sk+j :

x̂sk+j = V̂ kêsk+j + ˆ̂xsk

= V̂ kêsk+j +

k−1∑
i=0

(
V̂ iêsi+s + ψsi+s

)
= ˆ̂xsk+j − ψsk+j

ˆ̂xsk+j = x̂sk+j + ψsk+j (12)
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Note that we don't need to explicitly compute ˆ̂xsk+j or ˆ̂rsk+j within an inner loop iteration in order to update the
representation of the current solution, êsk+j , and residual, ĉsk+j , in the Krylov basis in the next inner loop iteration.
Therefore the round-o� error in computing ˆ̂xsk+j and ˆ̂rsk+j is not cumulative between inner iterations - the only
error that accumulates is the error in updating êsk+j and ĉsk+j .

In the following subsection, we analyze round-o� error that occurs in �nite precision CA-KSMs. We will obtain
an upper bound for the norm of the di�erence between the true and computed residual at step sk + j.

2.2 Deviation of the True and Computed Residual

We can premultiply Equation 4 by AV̂ k to write an expression (in exact arithmetic) for the value of Ax̂sk+j ,

Ax̂sk+j = A(V̂ kêsk+j + ˆ̂xsk) = AV̂ kêsk+j−1 + αsk+j−1AV̂
kask+j−1 +Aˆ̂xsk +AV̂ kξsk+j (13)

and we can premultiply Equation (6) by V̂ k to write an expression (in exact arithmetic) for r̂sk+j :

r̂sk+j = V̂ k ĉsk+j = V̂ k ĉsk+j−1 − αsk+j−1V̂ kT ′ask+j−1 + V̂ kηsk+j (14)

We can now write an expression for the di�erence between the true residual and the computed residual using our
recurrences for Ax̂sk+j and r̂sk+j :

b−Ax̂sk+j − r̂sk+j = b−AV̂ kêsk+j −Aˆ̂xsk − V̂ k ĉsk+j

= (b−AV̂ kêsk+j−1 −Aˆ̂xsk − V̂ k ĉsk+j−1)− (αsk+j−1AV̂
kask+j−1 − αsk+j−1V̂ kT ′ask+j−1)

− (AV̂ kξsk+j + V̂ kηsk+j)

= (b−Ax̂sk+j−1 − r̂sk+j−1)− (αsk+j−1AV̂
kask+j−1 − αsk+j−1V̂ kT ′ask+j−1)

− (AV̂ kξsk+j + V̂ kηsk+j)

= (b−Aˆ̂xsk − ˆ̂rsk)−
j∑
i=1

(αsk+i−1AV̂
kask+i−1 − αsk+i−1V̂ T ′ask+i−1 +AV̂ ξsk+i + V̂ ηsk+i)

(15)

Then we can bound the 2-norm as:

||b−Ax̂sk+j − r̂sk+j ||2 ≤ ||b−Aˆ̂xsk − ˆ̂rsk||2

+

j∑
i=1

(
||αsk+i−1AV̂ kask+i−1 − αsk+i−1V̂ kT ′ask+i−1||2 + ||AV̂ kξsk+i||2 + ||V̂ kηsk+i||2

)
(16)

The �rst term on the right hand side, ||b − Aˆ̂xsk − ˆ̂rsk||2, gives the norm of the accumulated error at the start
of this outer loop iteration. The remaining terms on the right hand side denote the error, or the deviation of the
computed from the true residual, accrued in each inner iteration due to �nite precision coe�cient updates. In order
to determine when the true and computed residual have deviated too far, we need to keep track of an estimate of
these quantities, and do it in a communication-avoiding way. We will �rst address the summation term, or, the error
in the coe�cient updates.

2.2.1 Error in Coe�cient Updates within Inner Loop

We will go through and bound each term in the summation: (1)αsk+i−1AV̂
kask+i−1−αsk+i−1V̂ kT ′ask+i−1, (2)AV̂ kξsk+i,

and (3)V̂ kηsk+i. Throughout this analysis, we will tend to favor the 2-norm. Although the analysis could be done
using any p−norm, the 2-norm quantities are easily computable in a communication-avoiding fashion, since the
O(2s + 1 × 2s + 1) Gram matrix encodes the dot-products with the basis vectors. For the remainder of this paper
we will drop terms higher than O(ε) for simpli�cation.
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Theorem 2.1. Let

V̂ ki−1 = [P̂ ki−1, R̂
k
i−2] = [v̂p, sk, ..., v̂p, sk+i−1, v̂r, sk, ..., v̂r, sk+i−2]

V̂ ki = [P̂ ki , R̂
k
i−1] = [P̂ ki−1, v̂p, sk+i, R̂

k
i−2, v̂r, sk+i−1]

be matrices of 2i−1 and 2i+1 basis vectors, respectively, for a Krylov subspace with A. Then ||αsk+i−1AV̂ ki−1ask+i−1−
αsk+i−1V̂ ki T

′ask+i−1||2 is bounded above by

||αsk+i−1AV̂ ki−1ask+i−1 − αsk+i−1V̂ ki T ′ask+i−1||2

≤ ||AV̂ ki−1 − V̂ ki T ′||2 · ||αsk+i−1ask+i−1||2

≤
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+i

γi
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+i−1

γi
||2
)

·
(
||êsk+i − êsk+i−1||2

)
where

||ζ
p, sk+t

γt
||2 ≤ ε

(
1

|γt|
· ||v̂p, sk+t||2 + (2|θt|+ 2mA||A||2) · ||v̂p, sk+t−1||2 +

2|σt|
|γt|

· ||v̂p, sk+t−2||2
)

1 ≤ t ≤ i

||ζ
r, sk+t

γt
||2 ≤ ε

(
1

|γt|
· ||v̂r, sk+t||2 + (2|θt|+ 2mA||A||2) · ||v̂r, sk+t−1||2 +

2|σt|
|γt|

· ||v̂r, sk+t−2||2
)

1 ≤ t ≤ i

Proof. We will bound ||αsk+i−1AV̂ ki−1ask+i−1 − αsk+i−1V̂ ki T ′ask+i−1||2, computed exactly. We can rewrite this as

||αsk+i−1AV̂ ki−1ask+i−1 − αsk+i−1V̂ ki T ′ask+i−1||2 ≤ ||AV̂ ki−1 − V̂ ki T ′||2 · ||αsk+i−1ask+i−1||2
First we will bound ||αsk+i−1ask+i−1||2. Using equation (4), we can write

αsk+i−1a
sk+i−1 = êsk+i − êsk+i−1 − ξsk+i

|αsk+i−1ask+i−1| ≤ |êsk+i − êsk+i−1|+ |ξsk+i|

||αsk+i−1ask+i−1||2 ≤ ||êsk+i − êsk+i−1||2 + ε||êsk+i||2 (17)

Now, the term left to bound is ||AV̂ ki−1 − V̂ ki T ′||2. We know that, computed in �nite precision,

V̂ ki = [P̂ ki−1, v̂p, sk+i, R̂
k
i−2, v̂r, sk+i−1]

where vp, sk+i is a basis vector for the Krylov subspace with starting vector p̂sk, de�ned by the formula (similarly for
vr, sk+i−1):

vp, sk+i = γi(A− θiI)v̂p, sk+i−1 + σiv̂p, sk+i−2 (18)

= γiAv̂p, sk+i−1 − γiθiv̂p, sk+i−1 + σiv̂p, sk+i−2

Parameters γi, θi, and σi are coe�cients de�ning the three-term polynomial basis for the Krylov subspace. In the
monomial basis, θi and σi are always 0, and γi = 1. For Newton, γi = 1, σi = 0, and θi are chosen to be eigenvalue
estimates (Ritz values), ordered according to the (modi�ed) Leja ordering. For Chebyshev, these parameters are
chosen based on the bounding ellipse for the estimated eigenvalues of A.

When Equation (18) is implemented in �nite precision, we get (See Appendix A), similarly for vr, sk+i−1:
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v̂p, sk+i = fl(vp, sk+i) = γi(A− θiI)v̂p, sk+i−1 + σiv̂p, sk+i−2 + ζsk+i

= γiAv̂p, sk+i−1 − γiθiv̂p, sk+i−1 + σiv̂p, sk+i−2 + ζsk+i (19)

|ζp, sk+i| ≤ ε (|v̂p, sk+i|+ 2(|γiθi|+mA · |γi| · |A|) · |v̂p, sk+i−1|+ 2|σiv̂p, sk+i−2|) (20)

Now, rearranging Equation (19), we get an expression for Av̂p, sk+i−1 (or, similarly, Av̂r, sk+i−2):

Av̂p, sk+i−1 =
1

γi

[
v̂p, sk+i + γiθiv̂p, sk+i−1 − σiv̂p, sk+i−2 − ζp, sk+i

]
=

1

γi
v̂p, sk+i + θiv̂p, sk+i−1 −

σi
γi
v̂p, sk+i−2 −

ζp, sk+i

γi

Notice that the right hand side is a multiplication of the �nite precision basis vectors by T , our tridiagonal matrix

with change-of-basis coe�cients, plus the error term, ζ
p, sk+i

γi
. To write AV̂ ki−1, we can write the above as a matrix

equation:

A · [v̂p, sk, ..., v̂p, sk+i−1, v̂r, sk, ..., v̂r, sk+i−2]

= [v̂p, sk, ..., v̂p, sk+i, v̂r, sk, ..., v̂r, sk+i−1] · T ′

−[
ζp, sk+1

γ1
, ...,

ζp, sk+i

γi
,
ζr, sk+1

γ1
, ...,

ζr, sk+i−1

γi
]

AV̂ ki−1 = V̂ ki T
′ − [

ζp, sk+1

γ1
, ...,

ζp, sk+i

γi
,
ζr, sk+1

γ1
, ...,

ζr, sk+i−1

γi
]

We can rearrange the above equation to get

AV̂ ki−1 − V̂ ki T ′ = −[
ζp, sk+1

γ1
, ...,

ζp, sk+i

γi
,
ζr, sk+1

γ1
, ...,

ζr, sk+i−1

γi
]

Taking the norm of both sides, we see that

||AV̂ ki−1 − V̂ ki T ′||2 ≤ ||[
ζp, sk+1

γ1
, ...,

ζp, sk+i

γi
,
ζr, sk+1

γ1
, ...,

ζr, sk+i−1

γi
]||2

≤
√
N ||[ζ

p, sk+1

γ1
, ...,

ζp, sk+i

γi
,
ζr, sk+1

γ1
, ...,

ζr, sk+i−1

γi
]||1

=
√
N ·max

(
||ζ

p, sk+1

γ1
||1, ..., ||

ζp, sk+i

γi
||1, ||

ζr, sk+1

γ1
||1, ..., ||

ζr, sk+i−1

γi
||1
)

≤
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+i

γi
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+i−1

γi
||2
)

Now, we can write the whole bound as

||αsk+i−1AV̂ ki−1ask+i−1 − αsk+i−1V̂ ki T ′ask+i−1||2
≤ ||AV̂ ki−1 − V̂ ki T ′||2 · ||αsk+i−1ask+i−1||2

≤
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+i

γi
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+i−1

γi
||2
)

·
(
||êsk+i − êsk+i−1||2

)
+O(ε2)

Using Equation (20), we get
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||ζ
p, sk+t

γt
||2 ≤ ε

(
1

|γt|
· ||v̂p, sk+t||2 + (2|θt|+ 2mA||A||2) · ||v̂p, sk+t−1||2 +

2|σt|
|γt|

· ||v̂p, sk+t−2||2
)

1 ≤ t ≤ i

||ζ
r, sk+t

γt
||2 ≤ ε

(
1

|γt|
· ||v̂r, sk+t||2 + (2|θt|+ 2mA||A||2) · ||v̂r, sk+t−1||2 +

2|σt|
|γt|

· ||v̂r, sk+t−2||2
)

1 ≤ t ≤ i− 1

This proves the Theorem.

We have two terms left to bound in Equation (16), AV̂ kξsk+i and V̂ kηsk+i. We can bound the 2-norm of AV̂ kξsk+i

as

||AV̂ kξsk+i||2 ≤ ||A||2 · || ˆ|V k| · |ξsk+i| ||2
≤ ε||A||2 · || ˆ|V k| · |êsk+i| ||2 (21)

Now, to bound the 2-norm of V̂ kηsk+i, we plug in and use Equation (7):

||V̂ kηsk+i||2 ≤ || |V̂ k| · |ηsk+i| ||2
≤ ε|| |V̂ k| · (|ĉsk+i|+mT |T ′| · |αsk+i−1ask+i−1|)||2
≤ ε|| |V̂ k| · (|ĉsk+i|+mT |T ′| · |êsk+i − êsk+i−1|)||2
≤ ε(|| |V̂ k| · |ĉsk+i| ||2 +mT ||T ′||2 · || |V̂ k| · |êsk+i − êsk+i−1| ||2) (22)

Putting all our terms together, we �nd

||b−Ax̂sk+j − r̂sk+j ||2
≤ ||b−Aˆ̂xsk − ˆ̂rsk||2

+

j∑
i=1

[
||αsk+i−1AV̂ kask+i−1 − αsk+i−1V̂ kT ′ask+i−1||2 + ||AV̂ kξsk+i||2 + ||V̂ kηsk+i||2

]
≤ ||b−Aˆ̂xsk − ˆ̂rsk||2 (23)

+

j∑
i=1

[
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+i

γi
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+i−1

γi
||2
)
·
(
||êsk+i − êsk+i−1||2

)
+ ε||A||2 · || |V̂ k| · |êsk+i| ||2 + ε(|| |V̂ k| · |ĉsk+i| ||2 +mT ||T ′||2 · || |V̂ k| · |êsk+i − êsk+i−1| ||2)]

2.2.2 Error in Basis Change in Outer Loop

Now, we want to bound the term ||b−Aˆ̂xsk − ˆ̂rsk||2 in Equation (23). We can write, again assuming x0 = 0, r0 = b,
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||b−Aˆ̂xsk − ˆ̂rsk||2
= ||b−A(x̂sk + ψsk)− r̂sk − φsk||2
≤ ||b−Ax̂sk − r̂sk||2 + ||Aψsk + φsk||2
= ||b−Ax̂s(k−1)+s − r̂s(k−1)+s||2 + ||Aψs(k−1)+s + φs(k−1)+s||2
≤ ||b−Aˆ̂xs(k−1) − ˆ̂rs(k−1)||2 + ||Aψs(k−1)+s + φs(k−1)+s||2

+

s∑
i=1

[||αs(k−1)+i−1AV̂ k−1as(k−1)+i−1 − αs(k−1)+i−1V̂ k−1T ′as(k−1)+i−1||2

+ ||AV̂ k−1ξs(k−1)+i||2 + ||V̂ k−1ηs(k−1)+i||2]

≤
k−1∑
l=0

(
||Aψsl+s + φsl+s||2 +

s∑
i=1

[
||αsl+i−1AV̂ lasl+i−1 − αsl+i−1V̂ lT ′asl+i−1||2 + ||AV̂ lξsl+i||2 + ||V̂ lηsl+i||2

])

≤
k−1∑
l=0

(
||Aψsl+s||2 + ||φsl+s||2

)
+

k−1∑
l=0

s∑
i=1

(
||αsl+i−1AV̂ lasl+i−1 − αsl+i−1V̂ lT ′asl+i−1||2 + ||AV̂ lξsl+i||2 + ||V̂ lηsl+i||2

)
≤
k−1∑
l=0

(
||A||2 · ||ψsl+s||2 + ||φsl+s||2

)
+

k−1∑
l=0

s∑
i=1

(
||αsl+i−1AV̂ lasl+i−1 − αsl+i−1V̂ lT ′asl+i−1||2 + ||AV̂ lξsl+i||2 + ||V̂ lηsl+i||2

)
(24)

This bound, in words, says that the error at the start of the kth outer loop iteration is the sum of (1) the errors
in performing coe�cient updates in every inner loop iteration executed so far (iterations 1 through sk) and (2) the

errors in computing ˆ̂x and ˆ̂r in every outer loop iteration so far (outer loop iterations 1 through k).

2.2.3 Total Error

Putting the terms in the above two sections together, we obtain an upper bound for the error accumulated at iteration
sk + j :
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||b−Ax̂sk+j − r̂sk+j ||2
≤ ||(b−Aˆ̂xsk − ˆ̂rsk)||2

+

j∑
i=1

(
||αsk+i−1AV̂ kask+i−1 − αsk+i−1V̂ kT ′ask+i−1||2 + ||AV̂ kξsk+i||2 + ||V̂ kηsk+i||2

)
≤
k−1∑
l=0

(
||Aψsl+s||2 + ||φsl+s||2

)
+

k−1∑
l=0

s∑
i=1

(
||αsl+i−1AV̂ lasl+i−1 − αsl+i−1V̂ lT ′asl+i−1||2 + ||AV̂ lξsl+i||2 + ||V̂ lηsl+i||2

)

+

j∑
i=1

(
||αsk+i−1AV̂ kask+i−1 − αsk+i−1V̂ kT ′ask+i−1||2 + ||AV̂ kξsk+i||2 + ||V̂ kηsk+i||2

)
=

k−1∑
l=0

(
||A||2 · ||ψsl+s||2 + ||φsl+s||2

)
(25)

+

k−1∑
l=0

s∑
i=1

[
√
N ·max

(
||ζ

p, sl+1

γ1
||2, ..., ||

ζp, sl+i

γi
||2, ||

ζr, sl+1

γ1
||2, ..., ||

ζr, sl+i−1

γi
||2
)
·
(
||êsl+i − êsl+i−1||2

)
+ ε||A||2 · || |V̂ l| · |êsl+i| ||2 + ε(|| |V̂ l| · |ĉsl+i| ||2 +mT ||T ′||2 · || |V̂ l| · |êsl+i − êsl+i−1| ||2)]

+

j∑
i=1

[
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+i

γi
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+i−1

γi
||2
)
·
(
||êsk+i − êsk+i−1||2

)
+ ε||A||2 · || |V̂ k| · |êsk+i| ||2 + ε(|| |V̂ k| · |ĉsk+i| ||2 +mT ||T ′||2 · || |V̂ k| · |êsk+i − êsk+i−1| ||2)]

≤ dsk+j (26)

where we will use dsk+j to denote an upper bound for ||b− Ax̂sk+j − r̂sk+j ||2. By the equation above, we can keep
track of this quantity iteratively, by updating this quantity in each iteration as follows:
If 1 ≤ j ≤ s− 1:

dsk+j = dsk+j−1 +
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+j

γj
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+j−1

γj
||2
)
·
(
||êsk+j − êsk+j−1||2

)
+ ε||A||2 · || |V̂ k| · |êsk+j | ||2 + ε(|| ˆ|V k| · |ĉsk+j | ||2 +mT ||T ′||2 · || |V̂ | · |êsk+j − êsk+j−1| ||2) (27)

If j = s:
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ds(k+1)

= dsk+s = dsk+s−1

+
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+s

γs
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+s−1

γs
||2
)
·
(
||êsk+s − êsk+s−1||2

)
+ ε||A||2 · || |V̂ k| · |êsk+s| ||2 + ε(|| ˆ|V k| · |ĉsk+s| ||2 +mT ||T ′||2 · || |V̂ k| · |êsk+s − êsk+s−1| ||2)

+
(
||A||2 · ||ψsk+s||2 + ||φsk+s||2

)
= dsk+s−1

+
√
N ·max

(
||ζ

p, sk+1

γ1
||2, ..., ||

ζp, sk+s

γs
||2, ||

ζr, sk+1

γ1
||2, ..., ||

ζr, sk+s−1

γs
||2
)
·
(
||êsk+s − êsk+s−1||2

)
+ ε||A||2 · ((1 +mV ) · || |V̂ k| · |êsk+s| ||2 + ||ˆ̂xsk+s||2) (28)

+ ε((1 +mV ) · || ˆ|V k| · |ĉsk+s| ||2 + ||ˆ̂rsk+s||2 +mT ||T ′||2 · || |V̂ k| · |êsk+s − êsk+s−1| ||2)

2.3 Avoiding Communication in Computing the Upper Bound

In each iteration, we will update dsk+j , the deviation of the true and computed residual, given by Equations (27)
and (28). Section 3 will discuss how this quantity is used to determine whether or not residual replacement occurs
at a given iteration. First, however, we show how to compute the value of dsk+j in a communication-avoiding way,
to avoid reintroducing the communication bottlenecks that we sought to remove.

We can assume that we have estimates for ||A||2 and ||T ′||2.These quantities need be computed only once, since
their values do not change throughout the iteration. The remaining quantities we must compute are

1. max
(
|| ζ

p, sk+1

γ1
||2, ..., || ζ

p, sk+j

γj
||2, || ζ

r, sk+1

γ1
||2, ..., || ζ

r, sk+j−1

γj
||2
)
,

2. || |V̂ k| · |êsk+j | ||2 , || |V̂ k| · |ĉsk+j | ||2 and || |V̂ | · |êsk+j − êsk+j−1| ||2,

3. ||ˆ̂xsk+j ||2 and ||ˆ̂rsk+j ||2, and

4. ||êsk+j − êsk+j−1||2

We can compute
{
|| ζ

p, sk+1

γ1
||2, ..., || ζ

p, sk+s

γj
||2, || ζ

r, sk+1

γ1
||2, ..., || ζ

r, sk+s−1

γj
||2
}
at the beginning of the outer loop, and

then easily choose the maximum amongst the appropriate 2j − 1 scalar quantities within each inner loop iteration.
Computing this set involves computing the norm of each basis vector, which can easily be accomplished by use of
the Gram matrix for no additional communication cost. The additional computation cost is O(s2) per s steps.

For terms in 2. above, we have 2 choices. The �rst option is to upper bound each quantity as || |V̂ k| · |êsk+j | ||2 ≤
||V̂ k||2 · ||êsk+j ||2. This requires no additional communication, as each processor can compute ||V̂ k||2 using the Gram
matrix, and computing ||êsk+j ||2, ||ĉsk+j ||2, and ||êsk+j − êsk+j−1||2 are all local work. The additional computation

is O(s2) per outer loop iteration. The second option is to compute G|V̂ | = |V̂ T | · |V̂ | in each outer loop. Then G|V̂ |
can be used to compute the two-norm of these quantities without communication within the inner loop. Although
this provides a tighter bound, this option requires an additional global reduction in each outer loop iteration (the
asymptotic communication costs remain the same). This option also requires O(s2n) additional computation per
outer loop iteration.

We also use the Grammatrix to compute ||ˆ̂xsk+j ||2 ≤
√

(êsk+j)TG(êsk+j)+||ˆ̂xsk||2 and ||ˆ̂rsk+j ||2 ≤
√

(ĉsk+j)TG(ĉsk+j)

, where ||ˆ̂xsk||2 and ||ˆ̂rsk||2can be computed at the start of the inner loop (since we must communicate to compute

and distribute the values of ˆ̂xsk and ˆ̂rsk anyway). This requires O(n+ s2) operations per outer loop.
Finally, ||êsk+j−êsk+j−1||2 can be computed locally by each processor, so no additional communication is required.

Computing this quantity in each inner loop requires an additional O(s2) operations per outer loop.
We note that using the Gram matrix to compute inner products locally does result in an extra O(ε) error term.

However, since all quantities in 1-3. above are multiplied by ε in the bound for dsk+j , these O(ε) error terms become
O(ε2) error terms, and can thus be ignored in our bound.
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The communication and computation costs given for computing dsk+j above do not a�ect the overall computation
or communication cost of the algorithm. Therefore, we can keep track of the quantity dsk+j in each iteration without
asymptotically increasing the cost of communication or computation in CA-KSMs.

3 Replacement of Residuals in CA-KSMs

In order to improve the maximum attainable accuracy, we want to replace the computed residual with the true
residual at certain iterations, according to our calculated dsk+j value. We must choose these iterations carefully to
satisfy two constraints: 1) we don't want to let the deviation grow too large, and 2) we don't want to lose super-linear
convergence provided by the underlying Lanczos process.

Van der Vorst and Ye [24] have suggested the following condition for residual replacement to satisfy these prop-
erties:

dsk+j−1 ≤ ε̂||r̂sk+j−1||2 && dsk+j > ε̂||r̂sk+j ||2 && dsk+j > 1.1dinit (29)

where we initially set d0 = dinit = ε(||r0||2 + mA||A||2 · ||x0||2) = ε||b||2, and ε̂ is a tolerance parameter. The value
ε̂ =
√
ε has been found to be a good value empirically for standard KSMs [24], and we have observed good results

for CA-KSMs as well.
In our case, we do not know the actual value of ||r̂sk+j−1||2, but we can use the Gram matrix Ĝk to compute

||ˆ̂rsk+j−1||2. We will now argue that we can replace ||r̂sk+j−1||2 and ||r̂sk+j ||2 with ||ˆ̂rsk+j−1||2 and ||ˆ̂rsk+j ||2 in
Equation (29). Since

r̂sk+j−1 = ˆ̂rsk+j−1 − φsk+j−1

we can say

ε̂||r̂sk+j−1||2 ≤ ε̂||ˆ̂rsk+j−1||2 + ε̂||φsk+j−1||2

We know ||φsk+j−1||2 = O(ε) and ε̂ = ε1/2. Since ignore powers of ε larger than O(ε), this becomes:

ε̂||r̂sk+j−1||2 ≤ ε̂||ˆ̂rsk+j−1||2 +O(ε3/2)

≤ ε̂||ˆ̂rsk+j−1||2

Therefore, we can use ||ˆ̂rsk+j−1||2 in our replacement condition for CA-KSMs. An analogous argument holds for

||ˆ̂rsk+j ||2. Our condition for residual replacement in CA-KSMs will then be

dsk+j−1 ≤ ε̂||ˆ̂rsk+j−1||2 && dsk+j > ε̂||ˆ̂rsk+j ||2 && dsk+j > 1.1dinit (30)

If this statement is true, we perform a group update by accumulating the current value of ˆ̂xsk+j into vector ẑ, as
ẑ = fl(ẑ + ˆ̂xsk+j), and we set r̂sk+j = fl(b−Aẑ).

To perform a residual replacement in CA-KSMs, all processors must communicate their elements of ˆ̂xsk+j to
compute b− Aˆ̂xsk+j , and we must break out of the inner loop (potentially before completing s steps) and continue
with computing the next matrix powers kernel with the new residual in the next outer loop. This means our
communication costs could potentially increase if the number of replacements is high (i.e., we compute the true
residual every iteration), but our experimental results in the next section indicate that, as long as the generated
basis is numerically full-rank and the basis norm growth rate is not too high, the number of replacements is low
compared to the total number of iterations. Therefore the communication cost per s−steps does not asymptotically
increase. A formal round-o� analysis of the residual replacement scheme using this condition for KSMs can be found
in [24]. Our future work will include a round-o� analysis of this replacement scheme for CA-KSMs. The algorithm
for residual replacement can be found below in Algorithm 2.
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Algorithm 2 Residual Replacement

if dsk+j−1 ≤ ε̂||ˆ̂rsk+j−1||2 && dsk+j > ε̂||ˆ̂rsk+j ||2 && dsk+j > 1.1dinit
z = z + ˆ̂xsk+j

rsk+j = b−Az
xsk+j = 0
dinit = dk = ε(||rsk+j ||2 +mA||A||2 · ||z||2)
reset= 1
BREAK

end if

We can now give the algorithm for CA-CG with residual replacement, shown in Algorithm 3. Blue text denotes
new code added to Algorithm 1 for the purpose of residual replacement.
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Algorithm 3 CA-CG with Residual Replacement

Compute ||A||2
x0 = 0, r0 = b, p0 = r0

k = 0
d0 = dinit = ε(||r0||2)
z = 0
reset= 0
while (not converged)

[P k, Rk, T ] = Akx(A, [psk, rsk], [s+ 1, s], [[ρ0, ..., ρs]])
//where ρi is a polynomial of degree i

if(k==0) Compute ||T ′||2
Let V k = [P k, Rk],Gk = (V k)TV k

//Initialize coefficient vectors, which

//will be maintained such that xsk+j = V kesk+j + xsk, rsk+j = V kcsk+j , psk+j = V kask+j

ask = [1, 02s]
T
,csk = [0s+1, 1, 0s]

T
, esk = [02s+1]

for j = 1 : s
αsk+j−1 = ((csk+j−1)TGk(csk+j−1))/((ask+j−1)TGk(T ′ask+j−1))
esk+j = esk+j−1 + αsk+j−1a

sk+j−1

csk+j = csk+j−1 − αsk+j−1T ′ask+j−1
βsk+j−1 = ((csk+j)TGk(csk+j))/((csk+j−1)TGk(csk+j−1))
ask+j = csk+j + βsk+j−1a

sk+j−1

Update dsk+j using Eq. (27)
if dsk+j−1 ≤ ε̂||rsk+j−1||2 && dsk+j > ε̂||rsk+j ||2 && dsk+j > 1.1dinit

z = z + ˆ̂xsk+j

rsk+j = b−Az
xsk+j = 0
dinit = dk = ε(||rsk+j ||2 +mA||A||2 · ||z||2)
reset= 1
BREAK

end if

end for

if reset! = 1
Update dsk+s by Eq. (28)
xsk+s = [P k, Rk]esk+s + xsk

rsk+s = [P k, Rk]csk+s

end if

reset=0

psk+s = [P k, Rk]ask+s

k = k + 1
end while

return z + xsk

4 Experimental Results

We evaluated our residual replacement strategy on a few small matrices (both symmetric and unsymmetric) from
the University of Florida Sparse Matrix Collection, using the CA-BICG method (or CA-CG where appropriate). In
these experiments, we compare standard (BI)CG with both our CA-(BI)CG method and our CA-(BI)CG method
with residual replacement. We ran these tests for s = [4, 8, 16]. To lower the 2-norm of the matrix, we used row
and column scaling of the input matrix A as a preprocessing equilibration routine, as described in [11]. This process,
which only need be performed once, is used in lieu of scaling the basis vectors after they are generated, which
reintroduces communication dependencies between iterations. For each matrix, we selected a right hand side b such
that ||x||2 = 1, xi = 1/

√
n. We have found empirically that using a replacement tolerance around ε̂ =

√
ε , the same
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value used in Van der Vorst and Ye [24], ensures that the true and computed residual remain the same throughout
the computation.

The �gures below are organized as follows. The left column shows the convergence of

• standard (BI)CG (black line)

• standard (BI)CG with residual replacement (black dots) [24]

• CA-(BI)CG for all three bases:

� Monomial (blue line), Newton (green line), Chebyshev (red line)

• CA-(BI)CG with residual replacement for all 3 bases:

� Monomial (blue dots), Newton (green dots), Chebyshev (red dots).

The right column shows our upper bound estimates, dsk+j , for

• standard (BI)CG with residual replacement (black dashed line) [24]

• CA-(BI)CG with residual replacement for all 3 bases:

� Monomial (blue dashed line), Newton (green dashed line), and Chebyshev (red dashed line)

vs. the true value of ||rsk+jtrue − ˆ̂rsk+j ||2 for

• standard (BI)CG with residual replacement (black dots) [24]

• CA-(BI)CG with residual replacement for all 3 bases:

� Monomial (blue dots), Newton (green dots), and Chebyshev (red dots)

Table 1 shows the total number of replacements, and the iterations at which the replacements occurred, for each
experiment.
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Figure 1: cdde1. Model convection-di�usion di�erential equations. Non-normal.
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Figure 2: jpwh991. Unsymmetric matrix from Philips, LTD. Semiconductor device problem. Non-normal.
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Figure 3: mesh1em1. Structural problem from NASA. SPD.
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Figure 4: mhdb416. Magneto-hydro-dynamics Alfven spectral problem. SPD.
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Figure 5: nos4. Beam Structure Model. SPD.
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Figure 6: pde900. Model Problem, Nx = Ny = 30. Non-normal.
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5 Analysis and Conclusions

Our results show that our residual replacement scheme for CA-KSMs is indeed e�ective, as has been observed for
KSMs. For all test cases, the Newton and Chebyshev bases converge to a level considered to be backward stable,
with the 2-norm of the true residual equal to O(ε||A||2 · ||x||2). From Table 1, we can see that, using the Newton
and Chebyshev bases, the number of residual replacements needed to maintain stability grows slowly (linearly) with
the basis size, and the total number of replacements is very small compared to the total number of iterations. We
expect this behavior because the conditioning of these polynomial bases grows slowly with s for many systems when
basis parameters are chosen appropriately [18].

Additionally, our experimental results indicate that residual replacements do not signi�cantly slow the rate of
converge for CA-KSMs with the Newton and Chebyshev bases. In fact, in many experiments, the CA-KSM with
residual replacement often converges at a faster rate than the CA-KSM without residual replacement. This, combined
with the observation that the total number of replacements is small with respect to the total number of iterations,
leads us to conclude that, using an appropriate Krylov basis, we can increase the maximum attainable accuracy of
CA-KSMs without asymptotically increasing communication or computation costs.

For the monomial basis, however, the basis condition number grows exponentially with s [8], which is re�ected
by a large number of replacements in our results. We observed that for all test matrices except the last two, nos4
and pde900, the monomial basis became numerically rank de�cient at some point during the algorithm for s = 16
(denoted by an asterisk in Table 1). Since our generated Krylov subspace is numerically rank de�cient here, we
expect frequent replacement up to a point (depending on the tolerance parameter ε̂). After the residual becomes so
small that the condition for replacement is no longer satis�ed (designed with the goal that the Lanczos procedure not
be disturbed), replacements will stop. At this point, we can't draw meaningful conclusions about the behavior of the
monomial basis. In the case of the �rst two non-normal matrices, cdde1 and jpwh991, the method does not converge
in this case. For the two SPD matrices mesh1em1 and mhdb416, however, the method does converge despite the
occurrence of a numerically rank-de�cient basis. Whether this is due to luck or some underlying properties remains
to be determined, and will require closer examination of which iterations were a�ected by a degenerate subspace.
For nos4 and pde900, both numerically full rank for all bases at s = 16, the CA-KSM with residual replacement does
converge, whereas the CA-KSM without residual replacement does not converge due to round-o� error.

Much work remains to be done on the analysis of CA-KSMs in �nite precision. In the immediate future, we
plan to perform an analysis of the replacement scheme chosen in �nite precision to support our experimental results.
We also plan to extend this analysis to other CA-KSMs, such as CA-BICGSTAB. This will follow the same general
process here, modulo a few extra terms.

We can also extend our error analysis to improve CA-KSM algorithms. One possibility is that we can heuristically
determine the maximum s value we can use given ε, based on an estimate of basis norm growth. This would allow
us to choose an s value that is as large as possible, without requiring a large number of residual replacement steps
(which limit our savings in communication). The error analysis performed here could also allow for dynamic selection
of s; depending on our error estimate and the frequency of residual replacements, s could be automatically increased
or decreased throughout the computation. Many opportunities exist for future research.
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Appendix A: Round-o� in Matrix Powers Computation

We assume the polynomial basis is computed via a 3-term recurrence, as follows:

v̂k = fl(vk) = γk(A− θkI)v̂k−1 − σkv̂k−2 + ζk

= γkAv̂k−1 − (γkθk)v̂k−1 − σkv̂k−2 + ζk

We wish to �nd a bound for ζk:
fl(Av̂k−1) = Av̂k−1 + δ0
|δ0| ≤ mAε|A| · |v̂k−1|

fl(γk · fl(Av̂k−1)) = γkAv̂k−1 + δ1
|δ1| ≤ ε (mA|γk| · |A| · |v̂k−1|+ |γkAv̂k−1|) +O(ε2)

fl(σkv̂k−2) = σkv̂k−2 + δ2
|δ2| ≤ ε|σkv̂k−2|

fl(γkθkv̂k−1) = γkθkv̂k−1 + δ3
|δ3| ≤ ε|(γkθk)v̂k−1|

fl( fl((γkθk)v̂k−1) + fl(σkv̂k−2) ) = γkθkv̂k−1 + δ3 + σkv̂k−2 + δ2 + δ4 = γkθkv̂k−1 + σkv̂k−2 + δ5
|δ4| ≤ ε (|γkθkv̂k−1 + σkv̂k−2|) +O(ε2)

|δ5| ≤ ε|σkv̂k−2|+ ε|(γkθk)v̂k−1|+ ε (|γkθkv̂k−1 + σkv̂k−2|) +O(ε2)

≤ 2ε (|σkv̂k−2|+ |(γkθk)v̂k−1|) +O(ε2)

fl( fl(γk · fl(Av̂k−1))− fl( fl((γkθk)v̂k−1) + fl(σkv̂k−2) ) ) =

γkAv̂k−1 + δ1 + γkθkv̂k−1 + σkv̂k−2 + δ5 + δ6 = γkAv̂k−1 + γkθkv̂k−1 + σkv̂k−2 + δ7

|δ6| ≤ ε (|γkAv̂k−1 − γkθkv̂k−1 − σkv̂k−2|) +O(ε2)

|δ7| ≤ ε (mA|γk| · |A| · |v̂k−1|+ |γkAv̂k−1|) + 2ε (|σkv̂k−2|+ |(γkθk)v̂k−1|)
+ε (|γkAv̂k−1 − γkθkv̂k−1 − σkv̂k−2|) +O(ε2)

≤ ε (|v̂k|+ 2|(γkθk)v̂k−1|+ 2|σkv̂k−2|+ |γkAv̂k−1|+mA|γk| · |A| · |v̂k−1|)

=⇒ |ζk| ≤ ε (|v̂k|+ 2|(γkθk)v̂k−1|+ 2|σkv̂k−2|+ |γkAv̂k−1|+mA|γk| · |A| · |v̂k−1|)
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